Back to all solutions
#2338 - Count the Number of Ideal Arrays
Problem Description
You are given two integers n and maxValue, which are used to describe an ideal array.
A 0-indexed integer array arr of length n is considered ideal if the following conditions hold:
- Every arr[i] is a value from 1 to maxValue, for 0 <= i < n.
- Every arr[i] is divisible by arr[i - 1], for 0 < i < n.
Return the number of distinct ideal arrays of length n. Since the answer may be very large, return it modulo 109 + 7.
Solution
/**
* @param {number} n
* @param {number} maxValue
* @return {number}
*/
var idealArrays = function(n, maxValue) {
const MOD = 1e9 + 7;
const MAX_N = 10010;
const MAX_P = 15;
const c = Array.from({ length: MAX_N + MAX_P }, () =>
new Array(MAX_P + 1).fill(0)
);
const sieve = new Array(MAX_N).fill(0);
const ps = Array.from({ length: MAX_N }, () => []);
for (let i = 2; i < MAX_N; i++) {
if (sieve[i] === 0) {
for (let j = i; j < MAX_N; j += i) {
if (sieve[j] === 0) {
sieve[j] = i;
}
}
}
}
for (let i = 2; i < MAX_N; i++) {
let x = i;
while (x > 1) {
const p = sieve[x];
let cnt = 0;
while (x % p === 0) {
x = Math.floor(x / p);
cnt++;
}
ps[i].push(cnt);
}
}
c[0][0] = 1;
for (let i = 1; i < MAX_N + MAX_P; i++) {
c[i][0] = 1;
for (let j = 1; j <= Math.min(i, MAX_P); j++) {
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
}
}
let ans = 0n;
for (let x = 1; x <= maxValue; x++) {
let mul = 1n;
for (const p of ps[x]) {
mul = (mul * BigInt(c[n + p - 1][p])) % BigInt(MOD);
}
ans = (ans + mul) % BigInt(MOD);
}
return Number(ans);
};