Back to all solutions
#1223 - Dice Roll Simulation
Problem Description
A die simulator generates a random number from 1 to 6 for each roll. You introduced a constraint to the generator such that it cannot roll the number i more than rollMax[i] (1-indexed) consecutive times.
Given an array of integers rollMax and an integer n, return the number of distinct sequences that can be obtained with exact n rolls. Since the answer may be too large, return it modulo 1e9 + 7.
Two sequences are considered different if at least one element differs from each other.
Solution
/**
* @param {number} n
* @param {number[]} rollMax
* @return {number}
*/
var dieSimulator = function(n, rollMax) {
const MOD = 1e9 + 7;
const faces = 6;
const dp = new Array(n + 1).fill().map(() => new Array(faces).fill(0));
for (let face = 0; face < faces; face++) {
dp[1][face] = 1;
}
for (let rolls = 2; rolls <= n; rolls++) {
for (let face = 0; face < faces; face++) {
const maxConsecutive = Math.min(rolls, rollMax[face]);
let sequences = 0;
for (let streak = 1; streak <= maxConsecutive; streak++) {
if (streak === rolls) {
sequences = (sequences + 1) % MOD;
} else {
let prevCombinations = 0;
for (let prevFace = 0; prevFace < faces; prevFace++) {
if (prevFace !== face) {
prevCombinations = (prevCombinations + dp[rolls - streak][prevFace]) % MOD;
}
}
sequences = (sequences + prevCombinations) % MOD;
}
}
dp[rolls][face] = sequences;
}
}
let result = 0;
for (let face = 0; face < faces; face++) {
result = (result + dp[n][face]) % MOD;
}
return result;
};