Back to all solutions
#840 - Magic Squares In Grid
Problem Description
A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.
Given a row x col grid of integers, how many 3 x 3 magic square subgrids are there?
Note: while a magic square can only contain numbers from 1 to 9, grid may contain numbers up to 15.
Solution
/**
* @param {number[][]} grid
* @return {number}
*/
var numMagicSquaresInside = function(grid) {
const rows = grid.length;
const cols = grid[0].length;
if (rows < 3 || cols < 3) return 0;
let result = 0;
for (let r = 0; r <= rows - 3; r++) {
for (let c = 0; c <= cols - 3; c++) {
if (isMagicSquare(grid, r, c)) result++;
}
}
return result;
};
function isMagicSquare(grid, r, c) {
if (grid[r + 1][c + 1] !== 5) return false;
const cells = [
grid[r][c], grid[r][c + 1], grid[r][c + 2],
grid[r + 1][c], grid[r + 1][c + 1], grid[r + 1][c + 2],
grid[r + 2][c], grid[r + 2][c + 1], grid[r + 2][c + 2]
];
if (!cells.every(val => val >= 1 && val <= 9) || new Set(cells).size !== 9) return false;
return (
grid[r][c] + grid[r][c + 1] + grid[r][c + 2] === 15
&& grid[r + 1][c] + grid[r + 1][c + 1] + grid[r + 1][c + 2] === 15
&& grid[r + 2][c] + grid[r + 2][c + 1] + grid[r + 2][c + 2] === 15
&& grid[r][c] + grid[r + 1][c] + grid[r + 2][c] === 15
&& grid[r][c + 1] + grid[r + 1][c + 1] + grid[r + 2][c + 1] === 15
&& grid[r][c + 2] + grid[r + 1][c + 2] + grid[r + 2][c + 2] === 15
&& grid[r][c] + grid[r + 1][c + 1] + grid[r + 2][c + 2] === 15
&& grid[r][c + 2] + grid[r + 1][c + 1] + grid[r + 2][c] === 15
);
}