Back to all solutions
#998 - Maximum Binary Tree II
Problem Description
A maximum tree is a tree where every node has a value greater than any other value in its subtree.
You are given the root of a maximum binary tree and an integer val.
Just as in the previous problem, the given tree was constructed from a list a (root = Construct(a)) recursively with the following Construct(a) routine:
- If a is empty, return null.
- Otherwise, let a[i] be the largest element of a. Create a root node with the value a[i].
- The left child of root will be Construct([a[0], a[1], ..., a[i - 1]]).
- The right child of root will be Construct([a[i + 1], a[i + 2], ..., a[a.length - 1]]).
- Return root.
Note that we were not given a directly, only a root node root = Construct(a).
Suppose b is a copy of a with the value val appended to it. It is guaranteed that b has unique values.
Return Construct(b).
Solution
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} val
* @return {TreeNode}
*/
var insertIntoMaxTree = function(root, val) {
if (!root || val > root.val) {
const newRoot = createNode(val);
newRoot.left = root;
return newRoot;
}
root.right = insertIntoMaxTree(root.right, val);
return root;
function createNode(value) {
return new TreeNode(value);
}
};