Back to all solutions
#2382 - Maximum Segment Sum After Removals
Problem Description
You are given two 0-indexed integer arrays nums and removeQueries, both of length n. For the ith query, the element in nums at the index removeQueries[i] is removed, splitting nums into different segments.
A segment is a contiguous sequence of positive integers in nums. A segment sum is the sum of every element in a segment.
Return an integer array answer, of length n, where answer[i] is the maximum segment sum after applying the ith removal.
Note: The same index will not be removed more than once.
Solution
/**
* @param {number[]} nums
* @param {number[]} removeQueries
* @return {number[]}
*/
var maximumSegmentSum = function(nums, removeQueries) {
const n = nums.length;
const result = new Array(n);
const prefixSum = new Array(n + 1).fill(0);
const parents = new Array(n).fill(-1);
const sizes = new Array(n).fill(0);
const sums = new Array(n).fill(0);
let maxSum = 0;
for (let i = 0; i < n; i++) {
prefixSum[i + 1] = prefixSum[i] + nums[i];
}
for (let i = n - 1; i >= 0; i--) {
result[i] = maxSum;
const index = removeQueries[i];
parents[index] = index;
sizes[index] = 1;
sums[index] = nums[index];
if (index > 0 && parents[index - 1] !== -1) {
const leftRoot = findRoot(parents, index - 1);
const segmentSum = sums[leftRoot] + sums[index];
parents[index] = leftRoot;
sizes[leftRoot] += sizes[index];
sums[leftRoot] = segmentSum;
}
if (index < n - 1 && parents[index + 1] !== -1) {
const root = findRoot(parents, index);
const rightRoot = findRoot(parents, index + 1);
if (root !== rightRoot) {
const segmentSum = sums[root] + sums[rightRoot];
if (sizes[root] < sizes[rightRoot]) {
parents[root] = rightRoot;
sizes[rightRoot] += sizes[root];
sums[rightRoot] = segmentSum;
} else {
parents[rightRoot] = root;
sizes[root] += sizes[rightRoot];
sums[root] = segmentSum;
}
}
}
maxSum = Math.max(maxSum, sums[findRoot(parents, index)]);
}
return result;
};
function findRoot(parents, x) {
if (parents[x] !== x) {
parents[x] = findRoot(parents, parents[x]);
}
return parents[x];
}