Back to all solutions
#1000 - Minimum Cost to Merge Stones
Problem Description
There are n piles of stones arranged in a row. The ith pile has stones[i] stones.
A move consists of merging exactly k consecutive piles into one pile, and the cost of this move is equal to the total number of stones in these k piles.
Return the minimum cost to merge all piles of stones into one pile. If it is impossible, return -1.
Solution
/**
* @param {number[]} stones
* @param {number} k
* @return {number}
*/
var mergeStones = function(stones, k) {
const n = stones.length;
if ((n - 1) % (k - 1) !== 0) return -1;
const prefixSums = new Array(n + 1).fill(0);
for (let i = 0; i < n; i++) {
prefixSums[i + 1] = prefixSums[i] + stones[i];
}
const dp = new Array(n).fill().map(() => new Array(n).fill(0));
for (let len = k; len <= n; len++) {
for (let start = 0; start + len <= n; start++) {
const end = start + len - 1;
dp[start][end] = Infinity;
for (let mid = start; mid < end; mid += k - 1) {
dp[start][end] = Math.min(
dp[start][end],
dp[start][mid] + dp[mid + 1][end]
);
}
if ((len - 1) % (k - 1) === 0) {
dp[start][end] += prefixSums[end + 1] - prefixSums[start];
}
}
}
return dp[0][n - 1];
};