Back to all solutions
#1284 - Minimum Number of Flips to Convert Binary Matrix to Zero Matrix
Problem Description
Given a m x n binary matrix mat. In one step, you can choose one cell and flip it and all the four neighbors of it if they exist (Flip is changing 1 to 0 and 0 to 1). A pair of cells are called neighbors if they share one edge.
Return the minimum number of steps required to convert mat to a zero matrix or -1 if you cannot.
A binary matrix is a matrix with all cells equal to 0 or 1 only.
A zero matrix is a matrix with all cells equal to 0.
Solution
/**
* @param {number[][]} mat
* @return {number}
*/
var minFlips = function(mat) {
const rows = mat.length;
const cols = mat[0].length;
const target = 0;
const start = mat.flat().reduce((acc, val, idx) => acc | (val << idx), 0);
const queue = [[start, 0]];
const seen = new Set([start]);
const directions = [[0, 0], [0, 1], [0, -1], [1, 0], [-1, 0]];
while (queue.length) {
const [state, steps] = queue.shift();
if (state === target) return steps;
for (let i = 0; i < rows; i++) {
for (let j = 0; j < cols; j++) {
let nextState = state;
for (const [di, dj] of directions) {
const ni = i + di;
const nj = j + dj;
if (ni >= 0 && ni < rows && nj >= 0 && nj < cols) {
const pos = ni * cols + nj;
nextState ^= (1 << pos);
}
}
if (!seen.has(nextState)) {
seen.add(nextState);
queue.push([nextState, steps + 1]);
}
}
}
}
return -1;
};