Back to all solutions
#3422 - Minimum Operations to Make Subarray Elements Equal
Problem Description
You are given an integer array nums and an integer k. You can perform the following operation any number of times:
- Increase or decrease any element of nums by 1.
Return the minimum number of operations required to ensure that at least one subarray of size k in nums has all elements equal.
Solution
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var minOperations = function(nums, k) {
const n = nums.length;
const minHeap = new PriorityQueue((a, b) => a[0] < b[0] ? -1 : 1);
const maxHeap = new PriorityQueue((a, b) => a[0] > b[0] ? -1 : 1);
const maxHeapSize = Math.ceil(k / 2);
const minHeapSize = k - maxHeapSize;
let total = 0;
for (let i = 0; i < k; i++) {
total += nums[i];
maxHeap.enqueue([nums[i], i]);
}
let minSum = 0;
const minHeapIndices = new Set();
for (let i = 0; i < minHeapSize; i++) {
const [num, idx] = maxHeap.dequeue();
minSum += num;
minHeap.enqueue([num, idx]);
minHeapIndices.add(idx);
}
let maxSum = total - minSum;
let median = maxHeap.front()[0];
let result = Math.abs(median * maxHeapSize - maxSum) + Math.abs(minSum - median * minHeapSize);
for (let i = k; i < n; i++) {
const num = nums[i];
const leftOut = i - k;
total += num - nums[leftOut];
while (!minHeap.isEmpty() && minHeap.front()[1] <= leftOut) minHeap.dequeue();
while (!maxHeap.isEmpty() && maxHeap.front()[1] <= leftOut) maxHeap.dequeue();
if (minHeapIndices.has(leftOut)) {
minHeapIndices.delete(leftOut);
minSum -= nums[leftOut];
maxHeap.enqueue([num, i]);
const [newNum, newIdx] = maxHeap.dequeue();
minSum += newNum;
minHeap.enqueue([newNum, newIdx]);
minHeapIndices.add(newIdx);
} else {
minHeap.enqueue([num, i]);
minSum += num;
minHeapIndices.add(i);
const [newNum, newIdx] = minHeap.dequeue();
minHeapIndices.delete(newIdx);
minSum -= newNum;
maxHeap.enqueue([newNum, newIdx]);
}
maxSum = total - minSum;
while (!maxHeap.isEmpty() && maxHeap.front()[1] <= leftOut) maxHeap.dequeue();
median = maxHeap.front()[0];
result = Math.min(
result,
Math.abs(median * maxHeapSize - maxSum) + Math.abs(minSum - median * minHeapSize)
);
}
return result;
};