Back to all solutions
#2123 - Minimum Operations to Remove Adjacent Ones in Matrix
Problem Description
You are given a 0-indexed binary matrix grid. In one operation, you can flip any 1 in grid to be 0.
A binary matrix is well-isolated if there is no 1 in the matrix that is 4-directionally connected (i.e., horizontal and vertical) to another 1.
Return the minimum number of operations to make grid well-isolated.
Solution
/**
* @param {number[][]} grid
* @return {number}
*/
var minimumOperations = function(grid) {
const m = grid.length;
const n = grid[0].length;
let count = 0;
const directions = [[-1, 0], [1, 0], [0, -1], [0, 1]];
const match = Array.from({ length: m }, () => new Array(n).fill(-1));
const visited = Array.from({ length: m }, () => new Array(n).fill(-1));
for (let i = 0; i < m; i++) {
for (let j = 0; j < n; j++) {
if (grid[i][j] && match[i][j] === -1) {
visited[i][j] = i * n + j;
count += dfs(i, j, visited[i][j]);
}
}
}
return count;
function dfs(i, j, v) {
for (const [di, dj] of directions) {
const x = i + di;
const y = j + dj;
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] && visited[x][y] !== v) {
visited[x][y] = v;
if (match[x][y] === -1 || dfs(Math.floor(match[x][y] / n), match[x][y] % n, v)) {
match[x][y] = i * n + j;
match[i][j] = x * n + y;
return 1;
}
}
}
return 0;
}
};