Back to all solutions
#3385 - Minimum Time to Break Locks II
Problem Description
Bob is stuck in a dungeon and must break n locks, each requiring some amount of energy to break. The required energy for each lock is stored in an array called strength where strength[i] indicates the energy needed to break the ith lock.
To break a lock, Bob uses a sword with the following characteristics:
- The initial energy of the sword is 0.
- The initial factor X by which the energy of the sword increases is 1.
- Every minute, the energy of the sword increases by the current factor X.
- To break the ith lock, the energy of the sword must reach at least strength[i].
- After breaking a lock, the energy of the sword resets to 0, and the factor X increases by 1.
Your task is to determine the minimum time in minutes required for Bob to break all n locks and escape the dungeon.
Return the minimum time required for Bob to break all n locks.
Solution
/**
* @param {number[]} strength
* @return {number}
*/
var findMinimumTime = function(strength) {
const n = strength.length;
const cost = Array.from({ length: n + 1 }, () => new Array(n + 1).fill(0));
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
cost[i + 1][j + 1] = Math.floor((strength[i] + j) / (j + 1));
}
}
const rowPotential = new Array(n + 1).fill(0);
const colPotential = new Array(n + 1).fill(0);
const assignment = new Array(n + 1).fill(0);
const parent = new Array(n + 1).fill(0);
for (let row = 1; row <= n; row++) {
assignment[0] = row;
let col = 0;
const minCol = new Array(n + 1).fill(Number.MAX_SAFE_INTEGER);
const visited = new Array(n + 1).fill(false);
do {
visited[col] = true;
const currentRow = assignment[col];
let delta = Number.MAX_SAFE_INTEGER;
let nextCol;
for (let j = 1; j <= n; j++) {
if (!visited[j]) {
const reducedCost = cost[currentRow][j] - rowPotential[currentRow] - colPotential[j];
if (reducedCost < minCol[j]) {
minCol[j] = reducedCost;
parent[j] = col;
}
if (minCol[j] < delta) {
delta = minCol[j];
nextCol = j;
}
}
}
for (let j = 0; j <= n; j++) {
if (visited[j]) {
rowPotential[assignment[j]] += delta;
colPotential[j] -= delta;
} else {
minCol[j] -= delta;
}
}
col = nextCol;
} while (assignment[col] !== 0);
do {
const prevCol = parent[col];
assignment[col] = assignment[prevCol];
col = prevCol;
} while (col);
}
return -colPotential[0];
};