Back to all solutions
#1631 - Path With Minimum Effort
Problem Description
You are a hiker preparing for an upcoming hike. You are given heights, a 2D array of size rows x columns, where heights[row][col] represents the height of cell (row, col). You are situated in the top-left cell, (0, 0), and you hope to travel to the bottom-right cell, (rows-1, columns-1) (i.e., 0-indexed). You can move up, down, left, or right, and you wish to find a route that requires the minimum effort.
A route's effort is the maximum absolute difference in heights between two consecutive cells of the route.
Return the minimum effort required to travel from the top-left cell to the bottom-right cell.
Solution
/**
* @param {number[][]} heights
* @return {number}
*/
var minimumEffortPath = function(heights) {
const rows = heights.length;
const cols = heights[0].length;
const directions = [[0, 1], [1, 0], [0, -1], [-1, 0]];
function canReach(maxEffort) {
const visited = Array.from({ length: rows }, () => Array(cols).fill(false));
const queue = [[0, 0]];
visited[0][0] = true;
while (queue.length) {
const [row, col] = queue.shift();
if (row === rows - 1 && col === cols - 1) return true;
for (const [dr, dc] of directions) {
const newRow = row + dr;
const newCol = col + dc;
if (newRow >= 0 && newRow < rows && newCol >= 0
&& newCol < cols && !visited[newRow][newCol]) {
const effort = Math.abs(heights[newRow][newCol] - heights[row][col]);
if (effort <= maxEffort) {
visited[newRow][newCol] = true;
queue.push([newRow, newCol]);
}
}
}
}
return false;
}
let left = 0;
let right = 1000000;
let result = right;
while (left <= right) {
const mid = Math.floor((left + right) / 2);
if (canReach(mid)) {
result = mid;
right = mid - 1;
} else {
left = mid + 1;
}
}
return result;
};