Back to all solutions
#3299 - Sum of Consecutive Subsequences
Problem Description
We call an array arr of length n consecutive if one of the following holds:
- arr[i] - arr[i - 1] == 1 for all 1 <= i < n.
- arr[i] - arr[i - 1] == -1 for all 1 <= i < n.
The value of an array is the sum of its elements.
For example, [3, 4, 5] is a consecutive array of value 12 and [9, 8] is another of value 17. While [3, 4, 3] and [8, 6] are not consecutive.
Given an array of integers nums, return the sum of the values of all consecutive non-empty subsequences.
Since the answer may be very large, return it modulo 109 + 7.
Note that an array of length 1 is also considered consecutive.
Solution
/**
* @param {number[]} nums
* @return {number}
*/
var getSum = function(nums) {
const MOD = 1e9 + 7;
const singleElementSum = nums.reduce((sum, num) => (sum + num) % MOD, 0);
return (getSubSum(nums, 1) + getSubSum(nums, -1) + singleElementSum) % MOD;
function getSubSum(nums, direction) {
const count = new Array(100002).fill(0);
const sum = new Array(100002).fill(0);
let result = 0;
for (const num of nums) {
const prev = num - direction;
const sumAtNum = (sum[prev] + num * (count[prev] + 1)) % MOD;
result = (result + sumAtNum - num + MOD) % MOD;
sum[num] = (sum[num] + sumAtNum) % MOD;
count[num] = (count[num] + count[prev] + 1) % MOD;
}
return result;
}
};