Back to all solutions
#980 - Unique Paths III
Problem Description
You are given an m x n integer array grid where grid[i][j] could be:
- 1 representing the starting square. There is exactly one starting square.
- 2 representing the ending square. There is exactly one ending square.
- 0 representing empty squares we can walk over.
- -1 representing obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.
Solution
/**
* @param {number[][]} grid
* @return {number}
*/
var uniquePathsIII = function(grid) {
const rows = grid.length;
const cols = grid[0].length;
let emptySquares = 0;
let startRow;
let startCol;
for (let i = 0; i < rows; i++) {
for (let j = 0; j < cols; j++) {
if (grid[i][j] === 0) emptySquares++;
if (grid[i][j] === 1) [startRow, startCol] = [i, j];
}
}
function explorePaths(row, col, remaining) {
if (row < 0 || row >= rows || col < 0 || col >= cols || grid[row][col] < 0) {
return 0;
}
if (grid[row][col] === 2) {
return remaining === 0 ? 1 : 0;
}
const current = grid[row][col];
grid[row][col] = -1;
const directions = [[0, 1], [1, 0], [0, -1], [-1, 0]];
let pathCount = 0;
for (const [dr, dc] of directions) {
pathCount += explorePaths(row + dr, col + dc, remaining - 1);
}
grid[row][col] = current;
return pathCount;
}
return explorePaths(startRow, startCol, emptySquares + 1);
};